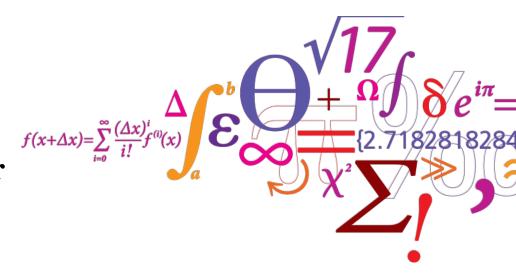


Active learners in Sustainable electronics and IT

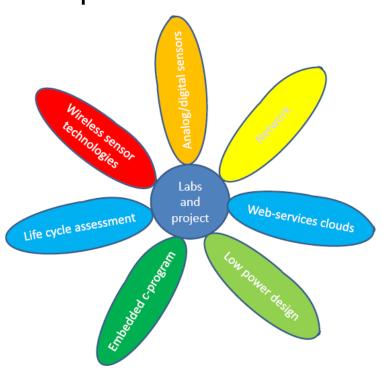

-learning about sensors, protocols and Internet Of Things by developing a sýstem

By Ole Schultz ass. professor

Department of Information Technology
DTU Diplom
Lautrupvang 15, 2750 Ballerup, DK
osch@dtu.dk

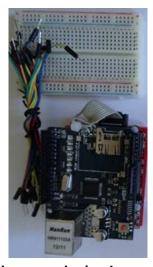
DTU Diplom

Center for Bachelor of Engineering Studies



Didactic Framing

- SUSIE during 13 week course 10 ECTS
- Overall learning goal:
 - -design for sustainabilityin low power wireless sensor system


- 2 times 4 hours per week
 - 9 weeks with
 - 1 lecture and assignment/exercise
 - 1 Lab-afternoon
 - 4 week self-chosen team-project

Materials - The susie kit

Thingspeak.com cloud server

internet

Bread-board /wires and a arduino (Olimexino)

Wireless nodes

Course web site http://www.sustainableelectronicit.org/

RaspBerry Pi

Lab exercises:

- Using digital and analog sensors together with the Arduino board
- Setting up a IEEE802.15.4 network using Xbee modules
- Embedded client-server controls of actuators
- REST web-service-api –using a given service ex thingspeak.com
- Energy consumption in an embedded system
- LCA analysis on the Xbee module

ETALEE²⁰¹⁵

Example on lab-exercise text

- Lab-exercise about Sensors
- Get a SUSIE-kit in the component hand-out share one kit in groups of 3 to 4 students
- A NTC resistor 10 kohm @25°C
- A LDR resistor
- A LM35 temperature sensor
- A Phototransistor SFH309
- A DSB20 Dallas one wire temperature sensor and DHT22/AM2303
- Use someDo some projects in atmel studio and use an appropriate library for the sensor
- Reflect and think
 - Look at the results How would you evaluate these results -
 - Find out to convert the sampled data to relevant units and send the results out on the terminal presented in correct units °C and lux the math.h library can support or use the map function or ?
- Be ready for showing a demo in the next class the 11 th Sep.

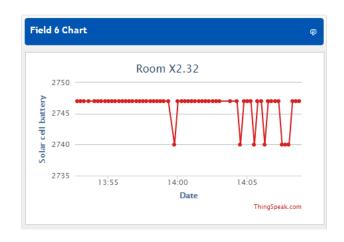
2015

Assignment example

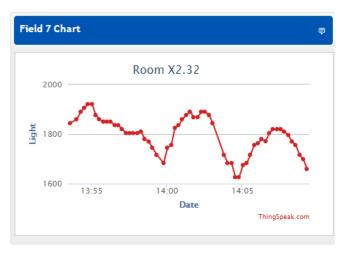
- Study chapter 9 in interconnecting smart objects using IP.
- In your group answer these questions
 - a. **Compare the different encoding-formats** for data in XML, JSON, CSV which one is requiring least and most amount of ascii chars?
 - b. Web-service how would you describe that and compare it with c.?
 - c. What is a REST service explain and compare with b
- Skim part 9.3 and Study the documentation for the API for thingspeak.com –
 - How should a post request be formatted API.
 - What is the security mechanism.

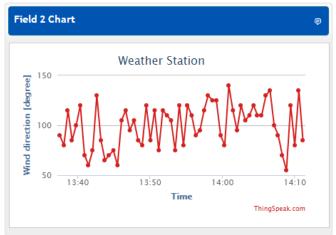
Lab-exercises and studies leads to project

- Conclusion
 - Based on 8 lab-assignments the project can be implemented


Some examples







Weather data to the thingspeak.com -free cloud service

A problem formulation

Heat control is a crucial part of our life. Whether we are living in house or flat we are involved. It is however making up a decisive part of our utility. Another fact is that we spend most of the time during a day away from home, but we still would like to return to a comfortable, warm home. It is a waste of resources to let the heat running all day long. How nice it would be to control the temperature somehow while we are away.

Problem based project work

- Examples Indoor Climate in a house or class room
 - Low power temperature measurement and control of a model house

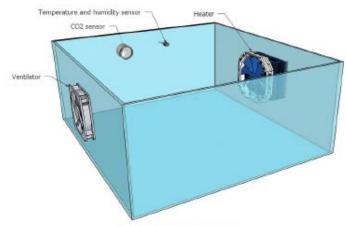
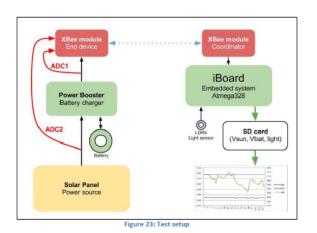



Figure 1: The room model

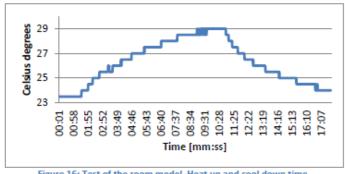


Figure 16: Test of the room model. Heat up and cool down time.

Energy harvesting

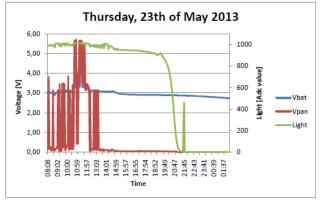


Figure 24: Reading from the XBee - Thursday

LCA example - the MECO method used on XBee

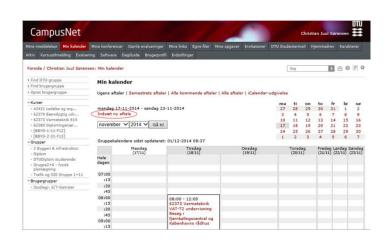
LCA comparison method: MECO: Materials, Energy, Chemicals and Others

- Define the Function unit ex. the wireless transmission of some data
- 2. Separate the device in pieces and get the weight for each part
- 3. Use Sigma Pro database calculate energy and mPR/kg

XBEE module				
Raw materials	Total	mPR/kg	mPR	
	quantity			
	[kg]			
Aluminium	4.54E-03	1.5	0.006812	
Chromium	1.50E-04	2.3	0.000346	1
Copper	8.90E-04	16.5	0.014682	1
Gold	5.96E-06	90000	0.536000	
Iron	6.63E-03	0.08	0.000530	1
Lead	1.45E-05	80	0.001163	1
Nickel	3.73E-04	106	0.039544	
Silver	9.07E-06	19000	0.172322	
Tin	7.99E-05	90	0.007191	
Zink	4.72E-05	33	0.001558	1

XBee module				
Energy resources	Total quantity	Total		
		Energy		
		Consumption		
Renewable	0.604 MJ	0.60 MJ		
Crude oil	0.0432 kg	2.16 MJ		
Natural Gas	0.0575 m ³	0.20 MJ		
Coal	0.21 kg	6.32 MJ		
Total		9.28 MJ		

mPR/kg: milli person resource per kg material Highest number indicates scare resource





Room booking in sustainable design and production (SDTU) + SUSIE

Two different groups in the two courses cooperated

Assesment

- Group presentation 5 minuttes per student
- Individually exam in the project and the curriculum for 15 minuttes
- Grade is given based upon quality of the report, project and the general understanding

Thank you!

• Questions?

ETALEE²⁰¹⁵ Litterature list

- Litt. 1 Interconnecting Smart Objects with IP:
 The Next Internet, Jean-Philippe Vasseur and Adam Dunkels, Publisher Morgan Kaufmann imprint of Elsevier, 2010, ISBN 978-0-12-375165-2
- Litt 2: The Internet of things key applications and protocols by Olivier Hersent, David Boswarthick, Omar Elloumi, Wiley 2012, ISBN978111999435 - Free at DTU – library as e-book. Use this http://findit.dtu.dk/
- Lit.3 Building Wireless Sensor Networks: with ZigBee, XBee, Arduino, and Processing [Kindle Edition], Publisher: O'Reilly Media; 1 edition (December 14, 2010) ISBN: 0596807732 (BWSNWZ) – can be downloaded from DTU's library
- Lit. 4: Introduction_microcontroller_on_the_Network.pdf
- Lit. 5: Green Mobile devices and Networks energy Optimization and Scavenging Techniques, HrishiKesh Venkataraman and Gabriel-Miro Muntean, editors, Publisher CRC Press, 2010 ISBN 978-1-4398-5989-6 (GMDN)
- Lit. 6: Energy Harvesting for Autonomous Systems, Stephen Beeby and Neil White, Publisher Artech House, 2010 isbn 978-1-59693-718-5 (EHAS)
- Lit. 7: Network essentials 3rd edition, Jeffrey S. Beasley and Piyasat Nilkaew, publisher 2012 by Pearson Education (NE)